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bstract

The main task of this work is related with the design of a class of SISO robust control law for the regulation of substrate concentration measured as
hemical demand of oxygen (CDO) of an industrial activated sludge wastewater plant. The control design is related with an uncertainty estimator
reduced order observer)-based active control. Departing from the dynamic error between the desired and the current substrate concentration
rajectories a control law is designed and the plant is regulated to the corresponding set point of the COD concentration. To be realizable the

ontroller needs model information related with the kinetic term of COD (substrate) consumption which is provided with a reduced order observer,
his coupled structure (observer-based controller) is robust against model uncertainties. The performance of the proposed control law is illustrated
ith numerical simulations employing a mathematical model of an industrial activated sludge wastewater plant tuned with industrial data.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Operating and controlling a wastewater treatment plant is not
simple task, raw wastewater varies continuously in quantity

nd composition and the heart of the process, the biomass, also
hanges under the influence of internal and external factors. To
et an adequate plant performance, the operational variables can
e adapted in any given situation to meet actual requirements;
hese changes are based on taking measurements of relevant
rocess parameters using grab or composite samples for further
onitoring and control tasks, however the lack of liable mea-

urements is a serious drawback in the operation of this kind of
rocess.

Several kinds of control strategies have been proposed for

iological processes, depending of the operation mode, for
xample, for batch and feed-batch processes, where optimal
oncentration profiles must be exploited; techniques as opti-
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tion; Robust performance

al and adaptive controllers have been proposed with success,
hese methodologies employ state and uncertainty observers
o infer unmeasured variables, which are coupled with some
ontrol laws to provide optimal substrate concentrations in the
ioreactor which tend to minimize the reaction time, improving
he performance of the operation [1–5]. On the other hand, the
ontinuous mode of operation, where an optimum steady-state
ust be reached, several approaches such as H∞, predictive and

euro-controller have been considered for regulation purposes
6–10]. They have shown an adequate performance for a class
f bioreacting systems, however, some of them are coupled with
ptimizing routines or are model-based; their main drawbacks
re over-parameterization and lack of robustness under model
ncertainties. Other family of control designs is related with
he nonlinear approach [11], where the generic, linearizing, and
ctive controllers, which belong to the named generalized lin-
arizing control, have been employed adequately, too. These
pproaches cancel the nonlinearities of the systems and try to

mpose a desired behavior for regulation and tracking purposes,
owever, considering that they are model based, robust gener-
lized linearizing controller based on state and/or uncertainty,
bservations have been presented in the open literature [12–16].

mailto:raguilar@correo.azc.uam.mx
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Recently, the standard active control (AC) has been employed
o control systems with high nonlinear behavior, in this method-
logy the controller design is based on the dynamics of the
ontrol error, i.e. the difference between the current and the
esired trajectory of the system. This methodology has been
uccessfully employed for synchronization of chaotic oscilla-
ors for security data transmission [17–19], but design of explicit
ontrollers with application to regulation of reacting process, as
he authors known, have not been studied enough. The realiza-
ion of the corresponding active control law is model based,
uch that the controller tries to cancel the nonlinearities and
mpose a stable behavior, such that under model uncertainties
he standard AC is not applicable. To avoid the problem men-
ioned above, in this work is proposed an observer-based active
ontrol, where a reduced order observer is designed to provide
he corresponding missing information (uncertain terms, related
ith modeling errors) to the controller and assuring a stable

losed-loop behavior.

. The industrial aerobic wastewater plant

Wastewater engineering represents, at present time, a sub-
ect area of worldwide interest, for reasons of public health,
conomic and social issues to which it is closely associated.
n particular, the wastewater generated by industrial processes
s a very important topic for engineering research; from them
he petrochemical industry under study produces a wastew-
ter which is generated in the different chemical processes.
he wastewater flow produced is about 7000 m3/d and con-

ains volatile organic carbon’s substances classified as toxics like
,2-dichloroethane, chloroform, benzene, among other volatile
ompounds (VOCs). To comply the Mexican environment legis-
ation [20] is around of 150 mg/L (2007 perspective) in order to
ischarge the wastewater treated into the river. One of the main
ffects on the plant operation is the actual temperature condi-
ion within the bioreactor which is 32 ◦C in October–November
eaching up to 41 ◦C in August–September. Due to this effect,
he microorganism’s activity is affected, and this must be
onsidered in the dynamic modeling of the system. Some
odels have been developed to describe the effect of temper-

ture on bacterial growth [21–23]. The authors showed that at
igh temperatures the maximum specific growth rate (μmax) is
educed.

For control purposes a mathematical model of an activated
ludge process is employed, this model presented in [24,25]
onsider a simple carbon removal model with an dynamic energy
alance to introduce the temperature effects on the maximum
pecific growth rate, mass transfer coefficient for oxygen (kla)
nd death coefficient (kd), which were incorporated in the mass
alance equations of the process.

The temperature effect on the maximum specific growth rate
as evaluated with Eq. (7), the mass transfer coefficient for

he oxygen (kla) with Eq. (9) which is an empirical function

f the air flow [26], the death coefficient (kd) with Eq. (8) the
vaporation flux of VOCs (KevS) is also considered in the COD
alance, together with the inactivate biomass (1 − fn)X which
ontributes to the growth of the substrate concentration in the

t
c

μ
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ioreactor—all were incorporated in the mass balance equations
f the process.

The process is described by the following balance equations,
s a first modeling approach of the temperature effect on dif-
erent parameters is considered introducing an energy balance
onsidering that the metabolic heat generation can be deleted in
omparison with the other energy flows. The bioreactor behavior
as assumed as a completely mixed flow reactor.
In the reactor:

Substrate (S) concentration mass balance:

dS

dt
= Qf

V
Sf − QO

V
S − μmax

Y

(
S

Ks + S

)

(
CO2

KOH + CO2

)
X + (1 − fn)X − KevS (1)

Biomass (X) concentration mass balance:

dX

dt
= Qr

V
Xr − QO

V
X + μmax

(
S

Ks + S

)

(
CO2

KOH + CO2

)
X − kdX (2)

Oxygen (CO2 ) concentration mass balance:

dCO2

dt
= Qf

V
CO2f − QO

V
CO2 − μmax

YO2

(
S

Ks + S

)

×
(

CO2

KOH + CO2

)
X + kla(CO2sat − CO2 ) (3)

Energy balance (T):

dT

dt
= QO

V
(Tin − T ) + QairρairCpair

VρCp

Tair + hcA

VρCp

(T − T∞)

(4)

It was assumed that there was no biomass in the overflow of
he settler [14].

In the settler:

dXr

dt
= QU

VS
Xr − QO

VS
X (5)

nd

O = Qf + Qr, QU = QW + Qr

here A is the transport area (m2), t the time (d), hc the heat trans-
er coefficient, Qf the influent flow rate (m3/d), Qr the recycle
ow rate (m3/d), QW the waste flow rate (m3/d), Qair the air flow
ate (m3/d), Sf the COD concentration in the influent (mg/L), S
he COD concentration in the reactor (mg/L), X the biomass con-
entration in the reactor (mg/L), Xr the biomass concentration in
he settler (mg/L), CO2f the dissolved oxygen concentration in
he influent (mg/L), CO2 the dissolved oxygen concentration in

he reactor (mg/L) and CO2sat is the dissolved oxygen saturation
oncentration (mg/L):

= specific growth rate (d−1) = μmaxS

Ks + S
(6)
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max = maximum specific growth rate (d−1)

= b2(T − 285)2{1 − exp[c(T − 330.5)]}2 (7)

here b = 0.05 (K−1 h−0.5), c = 0.005 (K−1), Ks = 30 mg/L (sub-
trate saturation coefficient) and KOH = 0.2 mg/L (substrate
aturation coefficient):

d = death coefficient (d−1) = kd 201.05(T−20) (8)

here kd 20 = 0.03 d−1 = death coefficient at 20 ◦C,
x/s = 0.67 = yield coefficient (mg biomass produced/mg
OD consumed) and YO2 = 2.03 = yield oxygen coefficient

mg biomass produced/mg O2 consumed):

la = mass transfer coefficient (d−1) = kla201.02(T−20) (9)

here kla20 = 166(1 − exp(−Qair/23,040)) is the mass trans-
er coefficient at 20 ◦C (d−1), T = wastewater temperature in
he reactor (◦C), V = 15,000 m3 (reactor volume), VS = 750 m3

settler volume), ρ = density (g/cm3) and Cp = heat capacity
kcal/g ◦C).

. Robust active control

.1. Problem statement

The objective of a wastewater plant is to transform pollutants
nd even toxic compounds into more environment friendly sub-
tances, in most of the cases the treated water must comply with
ome maximum of pollutant substances in accordance with leg-
slation rules, these restrictions generally fix the corresponding
et points to be reached. In view of the particular characteris-
ic of this kind of process, the operation is a difficult issue. For
he control of aerobic wastewater plant, several strategies have
een proposed, considering several input–output selections and
ISO and MIMO control structures for fed-batch and continuous
ioreactors. In this work a SISO control structure is considered,
or the sake of simplicity, to show how the active control (AC)
an be implemented, following the pair of control and controlled
ariables proposed in [27,28]; the COD (substrate) concentra-
ion is considered as the controlled measured output (y). The
OD is the amount of oxygen required to oxidize, by chemical
eans, organic carbon compounds completely to CO2 and H2O,

nd it is measured routinely in industrial operation [6]; the cor-
esponding control input (u) is related with the input flow, which
ffect the input substrate concentration rate. With the above, let
s analyze the following subsystem related with the substrate
ass balance equation:

dS

dt
= Qf

V
Sf − QO

V
S − ϑ (10)

ith

=μmax
(

S
) (

CO2

)
X + (1 − fn)X+KevS
Y Ks + S KOH + CO2

s the total COD consumption rate.
Note that the term ϑ(·) contains the COD kinetic rate, the non-

ctivate biomass and the volatile substrate. Now, it is proposed

n
o
s
a
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desired COD closed-loop trajectory as follows:

dyd

dt
= −α(yd − ysp) (11)

his desired output trajectory allows reaching the corresponding
et point ysp asymptotically with a convergence rate given by the
arameter α.

Now, defining the control error as

= S − Sd = y − yd (12)

hen

˙ = α(yd − ysp) − ϑ(◦) − QO

V
y + u(t) (13)

rom the above, the following controller is proposed, applying
he AC methodology:

(t) = Qf

V
Sf = αysp + ϑ(◦) + ζ(t) (14)

uch that this controller provides the following closed-loop
tructure of the control error dynamic:

˙ = αyd − QO

V
y + ζ(t) (15)

r in alternative form:

˙ = −QO

V
e +

(
α − QO

V

)
yd + ζ(t) (16)

he exogenous function ζ is chosen such that it can provide a
table behavior to the control error trajectory, in accordance with
he following structure:

(t) = −
(

α − QO

V

)
yd (17)

Note that the control input depends on the nonlinear term ϑ(·),
onsequently the controller is realizable only if the nonlinear
erm is known, which is an important drawback for the standard
C implementation when modeling errors are present.

.2. Robust active control law

One of the major bottlenecks in the application of computer
onitoring and control for biological process is the lack of

eliable, sterilizable and robust sensors for the on-line measure-
ents of process key variables, such as biomass, precursors,

roduct concentrations and consumption rates. Several attempts
o quantify the above variables have been employed, some
f them are optical techniques, other include electrochemical
etection and detection by viscosity, filtration and fluorescence
ethods [29], but these approaches frequently do not properly

ddress the most important industrial problems and necessities.
To tackle the problems mentioned above, several estimation

echniques for the bioprocess have been developed. These tech-

iques are often named soft-sensors. Some of them are based
n balancing technique. This approach is adequate for steady-
tate operation, however it becomes unstable when dynamic
nd corrupted measures are presented [30]; on the other hand
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ltering (observing) theory where extended Kalman filters, non-
inear Luenberger observers, sliding-mode, high gain and so on
ave been successfully employed [31–34]. Considering our par-
icular case, the state variable to be regulated is directly the

easures output of the system, i.e. the COD concentration such
hat, a reduced order observer to infer the uncertain term ϑ(◦) is
roposed as follows:

dϑ̂

dt
= τ(ϑobs − ϑ̂) (18)

here τ is the observer gain, ϑ̂ the estimate of the uncertain
erm and the observed uncertainty ϑobs is obtained by solving
he mass balance equation, in accordance with the next equation:

obs = −dy

dt
+ Qf

V
Sf − QO

V
y (19)

As it can be seen, the structure of the proposed observer
ncludes the derivative of the COD concentration, which must be
alculated in order to obtain estimates of the reaction rate. How-
ver, the synthesis of derivators is a difficult task; moreover, if the
oncentration measurements are noisy, the synthesis would be
mpossible. In order to avoid this situation the following change
f variable is proposed:

= ϑ̂ + τy (20)

roducing an uncertainty observer with the following structure:

dΘ

dt
= τ

(
Qf

V
Sf − QO

V
y − ϑ̂

)
(21)

ote that with Eqs. (20) and (21) the uncertain term can be
xpressed finally as

ˆ = Θ − τy (22)

s can be seen, this estimation methodology given by Eqs.
21) and (22) depends only on measured variables, avoiding
he output time derivative. Now, for the realization of the robust
non-ideal) AC, the estimate of the uncertain term determined
bove is coupled with the ideal AC to produce:

(t) = αysp + ϑ̂(◦) + ζ(t) (23)

ote that the above no ideal controller can recover its ideal
roperties if the estimation error e1 = ϑobs − ϑ̂ tends to zero.
o prove this, let us consider the convergence analysis of the
roposed observer, departing from the unknown dynamic of the
ncertain term:

dϑobs

dt
= Φ(◦) (24)

Eq. (18) is an asymptotic proportional reduced observer for
he system given by Eq. (24), where τ > 0, determines the desired
onvergence rate of the observer, if the following assumptions

re satisfied.

There exist τ and N ∈ �+ such that:

1. The dynamic of the uncertain term is bounded, i.e.
|	(◦)|| ≤ N

d
c
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2. limsup
t→∞

∥∥∥exp
(
− ∫ t

0 τ dσ
)∥∥∥ = 0

Considering the above Eq. (24), the dynamic of the estimation
rror is defined as

˙1 + τe1 = Φ(◦) (25)

olving it renders:

1 = exp

(
−

∫ t

0
τ dσ

) [
e10 +

∫ t

0
exp

(∫ s

0
τ dσ

)
Φ(◦) ds

]

(26)

here e10 is the initial condition of the estimation error. Taking
orms of Eq. (26) the following inequalities arises:

0 ≤ limsup
t→∞

||e1|| ≤ ||e10||limsup
t→∞

[∥∥∥∥exp

(
−

∫ t

0
τ dσ

)∥∥∥∥
]

+limsup
t→∞

[∫ t

0

∥∥exp
(∫ s

0 τ dσ
)
Φ(◦) ds

∥∥]
∥∥∥exp

(∫ t

0 τ dσ
)∥∥∥ (27)

From assumptions (A1) and (A2):

≤ limsup
t→∞

||e1(t)|| ≤ limsup
t→∞

[
N

∫ t

0

∥∥exp
(∫ s

0 τ dσ
)

ds
∥∥]

∥∥∥exp
(∫ t

0 τ dσ
)∥∥∥

he above equation means that the ∞/∞ case of uniform
’Hôpital’s Rule can be applied as follows:

≤ limsup
t→∞

||e1(t)|| ≤ limsup
t→∞

N

∥∥∥exp
(∫ t

0 τ dσ
)∥∥∥∥∥∥exp

(∫ t

0 τ dσ
)∥∥∥ ||τ||

= limsup
t→∞

N

||τ||
herefore

e1| ≤ N

||τ|| (28)

eside, the above inequality implies that the estimation error
an be as small as is desired, if the observer gain τ is chosen
arge enough.

Considering the inequality (28), it can be concluded that
he estimation error e1 converges to the closed ball Br(0) with
adius r = N/||τ|| producing practical convergence. Note that if
he system output is corrupted by additive noise, i.e. y = S = ξ,
nd the noise is considered bounded such that ||ξ|| ≤ Λ, a sim-
lar methodology used to analyze the estimation error e1 can
e applied in order to prove that the steady-state estimation
rror becomes (N + Λ)/τ which shows robustness against noisy
easurements.

.3. Remarks
In almost all cases, the substrate measurements are discrete
ue to the characteristics of the sensors for this class of pro-
esses introducing a delay for the system; therefore a discrete



Engineering Journal 139 (2008) 475–481 479

s
c
a
s
i
t
d
t
a
d
b
v
e
i
p
b
w
e
a
o
a
d
c
i
t
c

4

o
a
p
d
5
t
A
p
i
i
g
p
t
t
t
t
t
3
o

p
t
a
c
e
a
s

Fig. 1. Closed-loop steady-state phase portrait.

t
troller with a more large value of the parameter α, in order
to improve the convergence rate. The PI controller needs 52 d
to reach the corresponding set point. Fig. 3 is related with
M.I. Neria-González et al. / Chemical

ynthesis of the uncertainty estimator and the corresponding
ontrol law must be done. The main tasks of the digital observers
nd controllers are very close to the continuous ones, i.e. no
teady-state offsets and closed-loop stability. Generally speak-
ng, the discrete designs can be done for one of the following
wo ways [35]: the first is to carry out the design directly in
iscrete time and obtain the discrete design. The main advan-
ages of this approach are that all the effects of discretization
nd sampling are directly incorporated into the design proce-
ure, and the observer and control law resulting are only limited
y realizability conditions. However, one of the principal disad-
antages is the continuous nature of the process. This may not
asily take into account the strictly discrete version, such that
t is possible to generate closed-loop behaviors that meet good
erformance at sampling points while showing poor behavior
etween samples. This can be the case of continuous bioreactors
ith complex dynamics. The second one, which is the consid-

red approach on this paper, is to carry out controller design in
more familiar continuous time domain. The main advantage

f relying on controller design principles is already familiar,
nd allows the employment of all the theoretic developments on
ynamic systems for stability and performance issues. In this
ase, considering that the residence time of the wastewater plant
s about 48 h, and the sampling period is of 1 h, the considera-
ions mentioned above can be tackled in order to conserve the
ontinuous approach results.

. Results and discussion

The mathematical model was validated with the COD data
btained from the wastewater treatment plant which was in oper-
tion during a year, from October 2002 to September 2003 as
resented previously in [36]. For simulation purposes a step
isturbance in the recycle flow Qr is considered from 525 to
51 mg/L, besides other step disturbance on the oxygen concen-
ration at reactor input is also considered, from 3 to 2 mg/L.

commercial PI controller is simulated too for comparison
urposes, the tuning of the PI control’s gains was done via
nput–output response with a step disturbance in the control
nput, which yields the following parameters: the steady-state
ain K = 2.8 mg d/L m3; the characteristic time π = 7 d; the pro-
ortional control gain Kp = 1.5 d−1 and the integral time τI = 7 d,
hese values were obtained applying IMC tuning rules [35]. For
he robust AC controller the convergence rate α = 0.5 d−1 and
he observer gain τ = 1 d−1 were considered. The initial condi-
ions for COD, biomass, oxygen and biomass in the settler and
emperature are 2200 mg/L, 1000 mg/L, 6500 mg/L, 2 mg/L and
03 K, respectively, and the initial condition for the uncertainty
bserver is 0.1 mg/d.

Fig. 1 is related with the closed-loop concentrations space
ortrait, note that the controller lead the COD concentration to
he required set point (150 mg/L) with a biomass of 4200 mg/L
nd the dissolved oxygen is around 0.4 mg/L, which is the

losed-loop steady-state. Fig. 2 shows the closed-loop time
volution of the COD concentration can be observed as an
symptotic stable behavior of the COD trajectory to the former
et point which is reached in 12 d for the proposed controller
Fig. 2. Closed-loop performance of the COD.

his settling time can be reduced for the proposed AC con-
Fig. 3. Closed-loop performance of the system input (input flow).
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Fig. 4. Closed-loop uncertainty observer performance.

he closed-loop performance of the control output (COD con-
entration) when the disturbances arrive, the proposed AC
ontroller has a faster response in comparison with the PI con-
roller. Finally Fig. 4 shows the closed-loop performance of the
educed order observer, not a satisfactory performance of the
roposed estimation methodology, this occurs because the pro-
osed methodology is able to regulate the process into more
ide operating region given its nonlinear properties and the low
arameters dependence, which helps to avoid tuning issues.

. Conclusions

A mathematical model of an activated sludge wastewater
lant is developed and corroborated with industrial COD and
perating data with good results. This model is employed as
virtual process where the total COD (substrate) consumption

ate is supposed to be uncertain (unknown). To avoid the problem
f the modeling errors a reduced order observer is proposed, the
nformation generated by the observer is coupled with an active
ontrol law, such that a robust structure against modeling error
s achieved. Numerical simulations illustrate the satisfactory
erformance of the observer-based AC law.
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Hidraulica en México 20 (4) (2005) 33–43.


	Feedback regulation of an industrial aerobic wastewater plant
	Introduction
	The industrial aerobic wastewater plant
	Robust active control
	Problem statement
	Robust active control law
	Remarks

	Results and discussion
	Conclusions
	References


